GENERATION OF TAYLOR VORTICES IN COUETTE FLOW
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Recently the study of mechanisms of generation of hydrodynamic turbulence has been the subject of
numerous investigations (see [1] and the reviews [2, 3]). Until now, however, no answers have been found fo a
number of questions involving processes of fransition from a laminar to a turbulent state. It should be men-
tioned that instability of laminar flow does not lead at once to turbulence: Otherforms of equilibrium motion
can develop consisting of a superposition of the initial flow and perturbations of finite amplitude. The flow
between coaxial cylinders, Couette flow, which has been studied for many years, both theoretically and experi-
mentally [4~6], can serve as such an example, It is known that upon an increase in the rotation rate of the
inner cylinder Couette flow loses stability, which leads to the appearance of Taylor vortices. The present
report is devoted to a detailed investigation of this transition. It includes both theoretical and experimental

" results.

In the course of the experiments it was established that the transition to Taylor vortices takes place in a
mild way: With an increase in supercriticality the amplitude of the vortices varies by the Landau law [1]. The
transitions between states with different numbers of vortices at a low supercriticality were also investigated
and their stability limits were determined. In the theoretical part of the report the stability of steady-state
solutions is investigated within the framework of the envelope equation describing weak spatial modulation of
Taylor vortices.

2 2
1, As is known [6], stability loss of laminar Couette flow, the velocity of which is V, =—1§—1i1}§ (%— r)
2 1 ’

for rotation of the inner cylinder (Q is the rotation frequency and R, and R, are the radii of the inner and outer
cylinders), sets in at some Reynolds number Re, (Re= QR%/y). This instability is aperiodic, and for pertur-
bations which are periodic along the cylinder axis it is characterized by an increment ¥ having a maximum at
some value of the wave number k = k;. For low supercriticalities € = (Re—Rey)/Rey the perturbations are un-
stable in a narrow interval near k,. Their increment can be represented in the form

Yo = Yo — a(k - ko)2: ,
where 7, ~ & o > 0, and the interval Ak of unstable wave numbers, as follows from this, is proportional to

e¥2, Therefore, a narrow wave packet is excited at small excesses above the instability threshold. Thus, in
the linear stage of instability a perturbation of the velocity v can be represented in the form

v=q(r) A(z, 1) ¥ L+ c.c.,
where qa(r)eik()Z is the eigenfunction of the linear problem with k = ky; A(z, t) is the amplitude of the pertur-
bations, which varies slowly along z. As follows from the form of the increment (1.1), in the linear stage the
amplitude A obeys the equation

(1.1)

A6t = A + ad®A/dz2.

Stabilization of the instability is provided for by the nonlinear terms, Their structure is determined from
averaging over "fast" spatial oscillations. The first term of the expansion with respect to the nonlinearity is
~T|A[?A, Therefore, in this approximation the equation

8AI9t = p,A + ad?dlos® — TIAPA
for the amplitudes has almost the same structure as the analogous equation of [1], differing from it only by the
diffusion terms, It should be noted that this equation is encountered in the description of one-dimensional,
weakly supercritical convection [7].

(1.2)
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The expansion terms not allowed for in (1.2) will be small only with the condition of positivity of the
matrix element T, The matrix element T can be obtained from the Navier —Stokes equation by the standard
scheme: It arises from perturbation theory in the third order with respect to J/z. We do not need the explicit
form of T, however, Only information about the sign of T is required,

Let us consider the simplest solution of Eq. (1.2),
Ao = (/T2

describing a mild mode of excitation at T>0. The existence of a solution of this type was proven in [8]. For
just this reason T>0,

2. Equation (1.2) also has other steady-state solutions,

] — U Y,
A= conste'®”, | A" = Jo— % _ Tkote (2.1)

T T’

which describe Taylor vortices with a period 27/(ky+q) differing from the optimum period 2n/ky. It is seen
that such solutions exist only in that interval of wave numbers where the original flow is unstable (> 0).

Within the framework of the equation for the envelopes we can analyze the stability of Taylor vortices
with a given k. By linearizing Eq. (1.2) against the background of the steady-state equation (2.1}, for pertur-
bations of the form 6A = Ae®ty we can obtain the equation

9"u
ou =—=a 5
az*

+ 2iag % — Vigta (¥ 1 uF).
Its solution
u = et | y,p—i
describes two branches of oscillations with decrements
0= — %o — Y 4q = (Y;}0+q + 401'292“2)

From this it follows that Taylor vortices with a given q are stable [9] when

1/2

2 I JURY
@<= (AR

We note that at the stability limit the amplitude of vortices with a given ¢ remains finite and comprises \/E/-'; of
the amplitude A (at the same supercriticality) of vortices with the optimum period 2r/ky. Therefore, with a
decrease in the supercriticality €, a system of vortices must reorganize, forming vortices with a period close
to the optimum one. Alsothe reorganization must take place smoothly in an infinite system and with a jump in
a finite one owing to the discreteness of k.

Now let us consider the general steady-state solution of Eq. (1.2). First we change to the dimensionless
variables _ N
T =7t & =2V, u=A1YT =z + iy,
in which the equation acquires the form
uldr = 9wiaE + (1 — |uPu. (2.2)
Its steady-state solutions are determined from the equation
/ot = (r? — 1)r,
which describes the "motion® of a particle in a centrally symmetric field with a potential
V = —(1 — r¥/4,
This equation conserves the momentum M = r’39/9¢ and the energy
2

Finite motion, which exists only when M2 <4/27, has physical meaning. In this region of the parameters the
M2

roots ey, ey, and ez of the cubic equation E = 5

—-—i—(i —e)? are positive (e3> eq>e,>0).

Then the solution of the equation is written in the form
2 = e; -+ (e, — ey) sn™vE, (2.3)
where y = ((es— e1)/2)’/2; sn v¢ is an elliptic sine with a modulus k= ((ez—ei)/(eg—ei))“lz. In this case the phase
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6 is determined by integration of the expression M/A?2, Thus, the general steady-state solution found describes
smooth modulations in the vortex system. We note that the Taylor vortices proper correspond to solutions
with r? = const; the value of the constant is determmed from the extrema of the effective potential energy v+

2;‘Zr Here unstable Taylor vortices (2.1) (q >Ak /3) correspond to a minimum while stable ones (q <Ak2/3)
correspond to a maximum,

To investigate the stability of the general solution (2.3) we must determine the spectrum o¢ of the linearized
equation (2.2),
op = plok? + p(1 — r®) — 2r(pr),

where p is the perturbation.

We represent the vector p in the form p = ¢r 4 por/dt. Here the functions ¢ and i) are determined from

the system
o = 0%¢/9E? — 2(1 — r?)op/at — 2qr?, (2.4)

. oy = oMp/ok? - 200/E,
the coefficients of which are periodic functions of £ with periods 2K/ (K(k) is a complete elliptic integral of the
first kind).. Therefore, the solution (2.4) can be represented in the form of a product of eiP¢ times a periodic
function of £, while the spectrum o has a zonal structure as a function of the quasimomentum p. The boundaries
of the zone corresponding to purely periodic solutions can be found explicitly,

Thus, two eigenfunctions p; = or/ét (y = 1, ¢ = 0) and p, = (y, —z) ((p =—r ‘—;g—/M, V= r2/M) having a
quasimomentum p = 0 correspond to the value ¢ = 0, To find the other boundaries, we set y = 8f/8¢, in which
case the system (2.4) is reduced to one fourth-order equation

V2" (6 — 24+ 8%) + fo (o 4 2%y = 0.

We present the periodic solutions of this equation and the values of ¢ corresponding to them, which rep-

resent the boundaries of the zones:

f=snvE o= (Y){—(e; + ;) % l(es + 5)* + 3(es — €3)?11/2},

f=cnvE a= (Y){—(es + &5) = [(e; + e5)* + 3(e; — e)211/2},

f=dn~g, o= (M){—(e, + &) £ l(e; + e))? + 3(e; — e)?11/2}.
For each of the solutions the value of the eigenvalue ¢ with the upper sign is positive, which corresponds to in-
stability. Thus, in the weakly supercritical region there are no other stable steady-state solutions but Taylor

vortices.

3. The experimental installation (Fig. 1) consists of a hydrodynamic stand with a precision drive, a laser
Doppler velocity meter (LDVM), computer data input and output units, and external data output devices.

The hydrodynamic part of the installation consists of two coaxial metal cylinders 300 mm high, the gap
between which is 10 mm when the inner cylinder is 35 mm in diameter. The radial wobble of the inner cylinder
does not exceed 5 pm. A plastic outer cylinder of the same size was used in order to visualize the flow. Water
or an aqueous solution of glycerin was used as the working liquid. A given liquid temperature was maintained
with an accuracy of 0.02°C. A system of automatic control 14 of the speed of the motor 13 turning the inner
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cylinder provides stability on the order of 0.01% in a range from 100 msec to 10 sec. The rotation period can
be varied with 2 minimum step of 1074,

To measure the liquid velocity we used a two-frequency, two-component, laser Doppler velocity meter
the optical part of which is constructed on the scheme of forward scattering with a reference beam,
As the device for shifting the emission frequency of the laser 1 and a splitter we used a Bragg acoustooptical
cell 2 based on a TeO, crystal with an excitation frequency Q; = 24 MHz assigned by a frequency synthesizer 4.
As shown in Fig. 1, the laser beams enter through the upper optical window into the gap between the cylinders.
The geometry of the system allowed us to measure the velocity component Vp. The size of the measurement
volume was 600X 100 X 100 pm.

The use of a Bragg acoustooptical cell permitted a cardinal solution of the problem of filtration of the
"pedestal" of the Doppler signal. The zero-order beam and the diffracted beams are focused in the test region
of the stream, forming two interference fields with mutually orthogonal bands. The output signal of the photo-
receiver 3 is sent to the input of a selective amplifier with a central tuning frequency of 24 MHz, This ampli-
fier filters the noise and the constant component from the photoreceiver signal. Then the signal is fed to a
mixer 5, where its spectrum is shifted to the region of Doppler frequencies, after which it is fed to a tunable
filter 6, where the final filtration of noise and parasitic products of the frequency conversion from it occurs.
The filter output is connected to a shaper 7 [10, 11}, at the output of which one obtaing packets of pulses with a
Doppler frequency Wy which correspond to the passage of scattering particles through the measurement volume
and gate pulses whose duration is equal to the duration of these packets. The signals from the shaper output
are sent to a pulse counter and a time-interval meter, respectively, in a CAMAC block 10 and then to the
memory of an M-400 computer 11, where a mass of values of the instantaneous velocity is stored, The infor-
mation obtained is the initial information for the calculation of the required statistical characteristics of the
velocity. The results obtained are printed out on a graph plotter 12. Operational monitoring is performed
from an average-velocity indicator 8 and the signal of a frequency discriminator 9, the output voltage of which
is proportional to the "instantaneous® velocity. The electronic units of the LDVM, the input—output unit, and
the motor-drive control unit are built on the CAMAC standard [12]. The measurement complex also allows one
to obtain information on the radial velocity component Vp. An auxiliary frequency shift @ is used to determine
the sign of this component. The channel for amplification and treatment of the Doppler frequency e, is analo-
gous to that described above,

4, The transition from the laminar state to Taylor vortices was studied in the experiments, It was
established visually that different numbers N of pairs of vortices (from 11 to 18) are formed in the system
beyond the stability threshold, depending on the initial conditions. With a metal outer cylinder in the installation
the possibility of scanning along the z axis within the limits of two vortices also permitted a determination of
the number N. It was found that with a decrease in Re to the critical Re, a sequence of transitions was observed
from a state with an arbitrary number N to a state with Ny = 14. The dependence of the frequency F = Q27 of
rotation of the inner cylinder at which a loss of stability of a system with a certain N occurs on the number N of
vortex pairs is shown in Fig. 2. It is seen that the experimental transition points lie on a curve close to aparab-
ola, which is in accordance with the theoretical concepts of Sec. 1.

The Landau law was tested for a system with the optimum N;, For this we determined the amplitude A of
the first spatial harmonic A along z in the interval of supercriticalities 0.01<&<0.5; the experimental depend-
ence A~ £, where ¥ = 0.50  0.01, confirms the Landau law with good accuracy. For comparison we point out
that in analogous experiments [13] ¥ = 0.50 = 0.03.

It should be noted that at a slight supercriticality the small reserve of stability leads to the appearance
of a high noise level, Therefore, only the data (Fig. 3) at supercriticalities £~ 1% are reliable. At the same
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time, data in the region of €~ 0.1% are contained in the experiments of [13]. Moreover, with a decrease in the
supercriticality from €= 0.8 to € = 0.018 there is a shift of the extremal points 1-6 along z for the Ve com-
ponent, leading to disruption of the periodicity of the vortex structure (Fig. 4). It was shown experimentally
that this is connected with the influence of the ends, near which the hydrodynamic noise level is high. The pro-
cess of formation of vortices along the entire length was studied in one of the variants of the hydrodynamic
stand with cylinders of smaller length (100 mm) and a 10-mm gap. Dependences of V(p on z for three values of
F are presented in Fig. 5, from which it is seen that vortices are created near the ends and gradually fill the
entire system uniformly, With the same cylinders we obtained distributions of the components Vo (curves 1
and 2 in Fig. 6) and Vp (curves 3 and 4) as a function of r for Taylor vortices at points corresponding to the
maximum and minimum along z. It is seen that W is greatest at the center of the gap, while V, varies more
complexly, forming two maxima, With an increase in supercriticality Taylor vortices become unstable relative
to bending oscillations, studied visually in detail in [5]. A statistical analysis carried out on a computer shows
that in this case the autocorrelation function describes weakly damped oscillations with a frequency w; and a
quality of ~10%, With an increase in the supercriticality the form of the autocorrelation function becomes more
complicated; frequencies not commensurable with w; appear.
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STOKES FLOWS INSIDE A SPHERE

V. M. Bykov UDC 532.516

1. Pair of Stream Functions of Three-Dimensional Flow

Let Q be a sphere of radius R with the center at the origin of coordinates, ey, ey, and ey be unit vectors
of the spherical coordinate system (r, 0, ¢), and r = re,.. We designate the space of infinitely differentiable
solenoidal vector fields in the closed sphere  as V. In V we isolate the subspaces

V-={ve Viv-e, = 0}, Vt = {v = Virot v.e, = 0}.

With any function F & C=(Q) one can associate a field v—(F) =rot Fr = V-. Conversely, if a field

v- = V-is given, then from the condition div v~ = 0 we get

and therefore there exists a function F- = €~(Q) such that
aF—
o9

— . 8F— —
= g sin @, 5 = — Veo-

It is verified thatv- =v(F ) =rot F'r,

With any function F < C* (Q) one can also associate a field v+(F) =rotrot Fre V+. If a field vt = V+ is
given, then from the condition rot v* - e, = 0 we get

F7] 61}3‘
and therefore a function ¢ = ¢~(Q) exists such that
G G+
W—U@Slﬂe W——-Ug.

Defining F*(r, 0, 9) = -i—j‘ oG {0, 0, @) dp, we can verify that the angular field components rot rot F*r coincide with
0 i

the corresponding components v+, and since the radial component of the field v without a singularity at the ori-
gin of coordinates is uniquely expressed through the angular components from the condition div v = 0, we have
vt = v+(F+) = rotrot F'r,

The correspondences F—v™(F) and F—v'(F) defined above agree with the taking of the rot and lead to
a scalar Laplace operator A = div grad: C*(@) -C°°('Q—) and a vector operator A = —rotrot: V-V, That is,
the following equations are valid: rotv (F) =v (F), rot v¥(F) = —v-(AF), Av* (F) = v¥(AF). Since v~ (F) =
rot Fr = grad F x r, the streamlines of the field v~ (F) are intersections of surfaces F = const with spheres r =
const F is the stream function for v (F). If the field v (F) is irrotational, then ——-(rF is its potential, If
v (F) has axial symmetry, then its stream function has the form ¥ = —r sin eaF/ae Since all potential fields
and all axisymmetric fields without twist and with the condition of solenoidality belong to V+, F generalizes the
stream function and the potential of the field vV (F) at the same time.

We can show that any field ve V ii represented uniquely in the form v = v_+v+, where v— e V- and
v+ & V+. We determine the function ¥ (r, 6, ¢) for each fixed r, 0 <r =R, as the solution of the equation
AgyF = —rvy satisfying the condition ’

Frds = 0, ) (1.1
i

where S, is a sphere of radius r concentric with Q and
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